Selasa, 26 Mei 2015

Pertanyaan Sederhana yang Mungkin Sulit Dijawab

        Banyak fenomena menarik yang terjadi di alam, menyimpan “misteri” tanda kebesaran Tuhan Yang Maha Esa. Pertanyaan-pertanyaan muncul sebagai langkah awal untuk menguak ”misteri” tersebut. Pertanyaan yang sederhana diajukan oleh orang sekitar kita tentang fenomena alam mungkin akan sulit kita jawab. Berikut penjelasan fenomena-fenomena alam yang diperoleh dari beberapa sumber. Semoga bermanfaat.

1. Mengapa langit biru?

 


Sinar matahari yang menerangi langit siang berwarna putih yang “terbuat” dari warna pelangi.Debu dan partikel-partikel udara lain di udara mengurai cahaya dari matahari dan biru keluar paling kuat. Delapan foton cahaya biru muncul untuk setiap satu merah (cahaya biru yang memancar keluar dari molekul delapan kali lebih terang daripada cahaya merah). Langit tidak “murni” biru, karena warna-warna lain juga mencapai ke mata kita tetapi warna yang lain “ditenggelamkan” oleh warna biru.

2. Mengapa warna api biasanya orange?

Warna api tergantung dari suhu. Warna biru meanandakan suhu yang sangat tinggi. Api memerlukan oksigen. Ketika lilin terbakar, bagian tengah api,dekat dasarnya, tidak mendapatkan banyak oksigen. Jadi tampak gelap. Tetapi bagian luar dan puncak api mendapat banyak udara, di bagian ini api menyala terang. Saat sumbu terbakar dan lilih meleleh dan mendesis, karbon-serpihan lilin yang terbakar hangus dan berterbangan. Serpihan kecil karbon ini sangat panas, sehingga nyala api berwarna orange.

3. Mengapa bintang berkelap-kelip?


Bintang sebenarnya tidak berkelap-kelip. Bintang kelihatan berkelap-kelip apabila dilihat dari jarak jauh dan ketika cahayanya harus melewati udara dalam perjalananya ke mata kita. Saat sinar bintang melewati udara rapat kemudian udara tipis maka bintang tampak berkelap-kelip.

4. Dari mana datangnya pelangi?


Resep pelangi: butir-butir air di udara, cahaya, dan seseorang untuk melihatnya. Matahari harus “rendah” dilangit (sedikit di bawah garis cakrawala), anda berdiri membelakangi matahari memandang ke arah di mana hujan turun atau hujan baru turun. Seberkas sinar matahari menembus pusat tetesan air hujan kemudian sinar matahari dibiaskan oleh tetesan air hujan akibatnya sinar putih mendadak terpecah menjadi berkas-berkas warna yang cantik (pelangi).

5. Mengapa gelembung bulat?


Gelembung bulat karena tegangan permukaan menyebabkan lapisan cairan menarik diri ke bentuk yang mungkin paling kompak (stabil). Bentuk kompak di alam adalah bola. Jadi udara di dalam ditahan oleh gaya yang sama di sekeliling gelembung (sampai gelembung tidak pecah).

6. Bagaimana cara magnet menarik?


Magnet bisa menarik karena atom-atom dalam kelompok yang disebut domain magnetik (pertikel elementer) memiliki medan magnet dan menghadap ke arah yang sama. Jadi setiap domain seperti magnet kecil. Medan magnet tersebut disebabkan oleh arus listrik elektron-elektron yang bergerak mengorbit nukleus atom.

7. Bagaimana embun terjadi?


Embun terbentuk ketika udara yang berada di dekat permukaan tanah menjadi dingin mendekati titik dimana udara tidak dapat lagi menahan semua uap air. Kelebihan uap air itu kemudian berubah menjadi embun di atas benda-benda di dekat tanah. Sepanjang hari benda-benda menyerap panas dari matahari. Sedangkan di malam hari benda-benda kehilangan panas tersebut melalui suatu proses yang disebut radiasi termal. Ketika benda-benda di dekat tanah menjadi dingin, suhu udara disekitarnya juga menjadi berkurang. Udara yang lebih dingin tidak dapat menahan uap air sebanyak udara yang lebih hangat. Jika suhu udara bertambah semakin dingin, maka akhirnya akan mencapai titik embun. Titik embun adalah suhu dimana udara masih sanggup menahan uap air sebanyak mungkin. Bila suhu udara semakin bertambah dingin, sebagian uap air akan mengembun di atas permukaan benda yang terdekat.

8. Mata terlihat merah hasil foto kamera


Cahaya blitz dari kamera masuk ke mata dan difokuskan ke retina yang terdapat banyak pembuluh darah. Tiba di retina, bayangan sinar tadi dibuat bayangan oleh kamera di film. Dan ketika film di cetak, warna merah retina akan muncul di foto mata, sehingga mata terlihat berwarna merah.

9. Bagaimana kabut terbentuk?


Pada umumnya, kabut terbentuk ketika udara yang jenuh akan uap air didinginkan di bawah titik bekunya. Jika udara berada di atas daerah perindustrian, udara itu mungkin juga mengandung asap yang bercampur kabut membentuk kabut berasap, campuran yang mencekik dan pedas yang menyebabkan orang terbatuk. Di kota-kota besar, asap pembuangan mobil dan polutan lainnya mengandung hidrokarbon dan oksida-oksida nitrogen yang dirubah menjadi kabut berasap fotokimia oleh sinar matahari. Ozon dapat terbentuk di dalam kabut berasap ini menambah racun lainnya di dalam udara. Kabut berasap ini mengiritasikan mata dan merusak paru-paru. Seperti hujan asam, kabut berasap dapat dicegah dengan mengehentikan pencemaran atmosfer.
 
10. Mengapa kita tidak boleh melihat gerhana matahari dengan mata telanjang?


Pada saat kita menatap matahari ketika bagian matahari tertutup bulan, cahayanya tidak terlalu menyilaukan sehingga otak tidak memerintahkan pupil mata untuk mengecil. Akibatnya cahaya matahari yang kurang menyilaukan (tetapi tetap berbahaya) itu masuk dengan leluasa ke mata sampai ke retina. Bagian retina yang menerima cahaya matahari ini akan terbakar, tetapi karena retina tidak punya syaraf rasa sakit, kita tidak akan terasa apa-apa. Gangguan penglihatan baru mulai terjadi beberapa menit atau jam sesudah melihat gerhana.
11. Mengapa mobil tangki bensin selalu menyeret seuntai rantai besi?


Sewaktu truk melaju bensin akan terguncang, bebenturan dan bergesekan antara bensin dan dinding tangki. Ini dapat menyebabkan tangki bensin bermuatan listrik dan lama kelamaan akan terkumpul. Waktu berjalan debu akan melekat pada permukaan truk. Kalau debu itu tertumpuk terlalu banyak, dapat menimbulkan percikan bunga api. Ini sangat membahayakan terutama ketika bensin dituang. Untuk mencegah bahaya ini dengan menghantarkan muatan listrik yang timbul dalam tangki bensin maupun debu yang melekat pada permukaan truk itu ke tanah. Rantai yang diseret di belakang truk berfungsi untuk mengalirkan muatan-muatan listrik tersebut ke tanah.
12. Bagaimana gitar listrik dapat menghasilkan bunyi


Bagian gitar listrik yang menghasilkan bunyi adalah batang mendatar yang berisi magnet-magnet batang yang dililit kumparan kawat (disebut juga pickup). Senar gitar terbuat dari logam. Ketika bergetar, senar memotong garis medan magnet dan menghasilkan perubahan fluks magnetik dari magnet batang. Perubahan fluks ini menghasilkan arus listrik pada kumparan dan akan dikuatkan oleh ampliflier sehingga terdengar bunyi.


PENERAPAN GERAK JATUH BEBAS DALAM KEHIDUPAN SEHARI-HARI


   GLBB merupakan gerak lurus berubah beraturan. Berubah beraturan maksudnya kecepatan gerak benda bertambah secara teratur atau berkurang secara teratur. Perubahan kecepatan tersebut dinamakan percepatan. Secara awam sangat r menemukan benda yang melakukan gerak lurus berubah beraturan. Pada kasus kendaraan beroda misalnya, ketika mulai bergerak dari keadaan diam, pengendara biasanya menekan pedal gas (mobil dkk) atau menarik pedal gas (motor dkk). Pedal gas tersebut biasanya tidak ditekan atau ditarik dengan teratur sehingga walaupun kendaraan kelihatannya mulai bergerak dengan percepatan tertentu, besar percepatannya tidak tetap alias selalu berubah-ubah. Contoh GLBB dalam kehidupan sehari-hari pada gerak horisontal alias mendatar nyaris tidak ada.

Contoh GLBB yang selalu kita jumpai dalam kehidupan hanya gerak jatuh bebas. Pada gerak umit menemukan aplikasi GLBB dalam kehidupan sehari-hari.jatuh bebas, yang bekerja hanya percepatan gravitasi dan besar percepatan gravitasi bernilai tetap. Tapi dengan penerapa ilmu fisika, GLBB dapat ditemukan dalam kegiatan kita sehari-hari. Contohnya buah mangga yang lezat atau buah kelapa yang jatuh dari pohonnya.Jika kita pernah jatuh dari atap rumah tanpa sadar kita juga melakukan GLBB.

Gerak vertikal terdiri dari dua jenis, yakni gerak vertikal ke atas dan gerak vertikal ke bawah. Benda melakukan gerak vertikal ke atas atau ke bawah jika lintasan gerak benda lurus. Kalau lintasan miring, gerakan benda tersebut termasuk gerak parabola. Aplikasi gerak vertikal dalam kehidupan sehari-hari misalnya ketika kita melempar sesuatu tegak lurus ke bawah (permukaan tanah), ini termasuk gerak vertikal.


Senin, 25 Mei 2015

PENERAPAN GERAK LURUS BERATURAN DALAM KEHIDUPAN SEHARI-HARI

Banyak orang yang beranggapan bahwa Fisika hanya sekedar ilmu biasa yang hanya mempelajari ilmu alam tanpa ada penerapannya. Terutama masih banyak orang yang beranggapan bahwa Fisika hanya mempelajari rumus. Dan tak sedikit yang  tidak menyadari bahwa banyak peristiwa bahkan hal-hal yang sangat dekat dengan kita melibatkan ilmu Fisika. Bahkan Fisika merupakan ilmu dasar yang sangat dibutuhkan oleh cabang ilmu-ilmu lain. Mengapa Fisika sangat penting dalam kehidupan kita? Tentu karena banyak peristiwa dalam kehidupan kita yang melibatkan ilmu Fisika baik kita sadari maupun tan.pa kita sadari. Semakin kita memahami Fisika kita akan mengetahui bahwa Fisika mempunyai cakupan yang luas. Berikut adalah contoh aplikasi ilmu Fisika dalam kehidupan sehari-hari.
Gerak  Lurus Beraturan (GLB) merupakan gerak yang memiliki kecepatan yang konstan. Walaupun GLB sulitditemukan dalam kehidupan sehari-hari, karena biasanya kecepatan gerak benda selalu berubah-ubah. Misalnya ketika dirimu mengendarai sepeda motor atau mobil, laju mobil pasti selalu berubah-ubah. Ketika ada kendaraan di depan, pasti kecepatan kendaraan akan segera dikurangi. Hal ini agar kita tidak tabrakan dengan pengendara lain, terutama jika kondisi jalan yang ramai. Lain lagi jika kondisi jalan yang tikungan dan rusak.

Contoh kedua:
kendaraan yang melewati jalan tol. Walaupun terdapat tikungan pada jalan tol, kendaraan beroda bisa melakukan GLB pada jalan tol hal ini jika lintasan tol lurus. Kendaraan yang bergerak pada jalan tol juga kadang mempunyai kecepatan yang tetap.

Contoh kedua:
gerakan kereta api atau kereta listrik di atas rel. Lintasan rel kereta kadang lurus, walaupun jaraknya hanya beberapa kilometer. Kereta api melakukan GLB ketika bergerak di atas lintasan rel yang lurus tersebut dengan laju tetap.

Contoh ketiga :
kapal laut yang menyeberangi lautan atau samudera. Ketika melewati laut lepas, kapal laut biasanya bergerak pada lintasan yang lurus dengan kecepatan tetap. Ketika hendak tiba di pelabuhan tujuan, biasanya kapal baru mengubah haluan dan mengurangi kecepatannya.

Contoh keempat:
gerakan pesawat terbang. Pesawat terbang juga biasa melakukan GLB. Setelah lepas landas, pesawat terbang biasanya bergerak pada lintasan lurus dengan dengan laju tetap. Walaupun demikian, pesawat juga mengubah arah geraknya ketika hendak tiba di bandara tujuan.


PENERAPAN PRINSIP PEMUAIAN DALAM KEHIDUPAN SEHARI-HARI

Secara sederhana, pemuaian adalah fenomena pertambahan panjang, luas, atau volume suatu benda akibat adanya perubahan suhu. Prinsip pemuaian ini ternyata sudah banyak diterapkan untuk teknologi dalam kehidupan sehari-hari kita. Beberapa diantaranya adalah:

1. Bimetal
Bimetal adalah dua keping logam yang angka muainya berbeda kemudian dijadikan satu. Bimetal yang dipanaskan akan melengkung ke arah logam yang angka muainya kecil. Demikian juga kalau didinginkan, bimetal akan melengkung ke arah logam yang angka muainya besar. Penggunaan bimetal antara lain untuk termostat, sakelar otomatis pada lampu sein, dan termometer bimetal.

2. Pengelingan
Mengeling yaitu menyambung dua pelat dengan menggunakan paku keling. Cara pengelingannya dengan memanaskan paku, kemudian dimasukkan ke dalam lubang pelat. Setelah dimasukkan, ujung paku keling dipukul hingga melebar dan menjepit 2 pelat tersebut. Setelah dingin, paku keling mengkerut dan menjepit pelat dengan sangat kuat. Pengelingan biasanya digunakan pada pembuatan badan kapal, penyambungan besi jembatan, pembuatan tangki, dan pembuatan badan pesawat.

3. Pemasangan Bingkai Besi Roda
Zaman dahulu, roda pedati atau delman dibuat dari kayu yang dibingkai dengan besi dan karet. Untuk memasang bingkai besi, bingkai diusahakan dalam keadaan panas karena dalam keadaan dingin bingkai tidak dapat masuk pada roda. Setelah dipanaskan, bingkai akan mengalami pemuaian sehingga besar lingkaran dalam bingkai membesar dan dapat masuk pada roda delman. Saat dingin, bingkai besi akan mengerut dan menempel pada roda dengan kuat.

4. Pemasangan Kaca Jendela
Pada pemasangan kaca jendela, biasanya tidak dilakukan dengan tepat tetapi agak longgar. Mengapa demikian? Jika kita memasang kaca dengan tepat pada bingkainya maka saat udara panas, pemuaian akan terjadi pada kaca dan kaca dapat pecah. Karena besarnya pemuaian kaca lebih besar daripada pemuaian bingkai jendela, sehingga luas dan volume bingkai tidak dapat mengikuti kaca. Dari prinsip pemuaian ini, pemasangan kaca jendela atau kaca pintu dibuat agak longgar untuk mengantisipasi pemuaian yang terjadi pada kaca.

5. Pemasangan Rel Kereta Api dan Jembatan
Penerapan prinsip pemuaian juga dapat kita lihat pada teknologi rel kereta api. Pada rel kereta api, sambungannya tidak berimpit, tetapi ada rongga atau jarak antara rel yang satu dengan yang lain. Hal ini untuk mengatasi kemungkinan terjadinya pemuaian pada siang hari sehingga rel tersebut tidak melengkung. Penerapan prinsip pemuaian yang lain adalah pada pembuatan jembatan. Sambungan pada jembatan diberi celah untuk mengatasi kemungkinan pemuaian pada besi jembatan.

PENERAPAN PRINSIP TEKANAN DALAM KEHIDUPAN SEHARI-HARI

Pernahkah Anda melihat jarum suntik? Saya rasa hampir semua orang pernah melihat jarum suntik. Jarum suntik sering dikenal dengan nama jarum hipodermik. Jarum hipodermik atau jarum suntik merupakan jarum yang secara umum digunakan dengan alat suntik untuk menyuntikkan suatu zat ke dalam tubuh. Jarum ini juga dapat digunakan untuk mengambil sampel zat cair dari tubuh, contohnya mengambil darah dari urat darah halus pada venipuntur. Bagaimana cara kerja jarum suntik ditinjau dari ilmu fisika? Apakah ada prinsip fisika yang berkerja apa jarum suntik?

Alat suntik atau spuit (Inggris: syringe) adalah pompa piston sederhana untuk menyuntikkan atau menghisap cairan atau gas. Alat suntik terdiri dari tabung dengan piston di dalamnya yang keluar dari ujung belakang. Untuk memasukan obat ke dalam tubuh pada jarum suntik akan berlaku hukum fisika yaitu prinsip tekanan. Dalam ilmu fisika, Tekanan (p) adalah satuan fisika untuk menyatakan gaya (F) per satuan luas (A). Secara matematis, tekanan dapat dinyatakan dengan persamaan berikut ini :

P = F/A

P = tekanan, F = gaya dan A = luas permukaan. Satuan gaya (F) adalah Newton (N), satuan luas adalah meter persegi (m2). Karena tekanan adalah gaya per satuan luas maka satuan tekanan adalah N/m2. Nama lain dari N/m2 adalah pascal (Pa). Pascal dipakai sebagai satuan Tekanan untuk menghormati om Blaise Pascal. Kita akan berkenalan lebih dalam dengan om Pascal pada pokok bahasan Prinsip Pascal.

Agar jarum suntik bisa menembus kulit untuk menyuntikkan suatu zat ke dalam tubuh. Terlebih dahulu jarum suntik dibuat sangat kecil dan runcing. Tujuannya agar menambah tekanan sehingga mudah masuk ke dalam tubuh. Dari pernyataan tersebut kita ketahui bahwa luas permukaan (A) yang terkena gaya (force) berpengaruh terhadap tekanan (P). Dengan luas permukaan yang kecil menghasilkan tekanan yang lebih besar daripada luas permukaan yang lebar. Artinya apa? Ini berati bahwa tekanan berbanding terbalik dengan luas permukaan.

Nah, pada saat jarum suntik masuk kedalam tubuh maka alat suntik atau spuit ditekan sehingga cairan/obat bisa masuk ke dalam tubuh. Dengan memberikan tambahan tekanan maka tekanan cairan didalam spuit lebih besar daripada di dalam tubuh.


PENERAPAN ALAT OPTIK DALAM KEHIDUPAN SEHARI-HARI

Ketika kamu berfoto dengan teman-temanmu menggunakan kamera mungkin kamu tidak menyadari sedang menggunakan alat optik. Sekarang, terdapat banyak jenis kamera, seperti kamera analog dan kamera digital. Meskipun jenis dan teknologinya beraneka macam, tetapi pada prinsipnya sama, yaitu menggunakan pembiasan dan pemantulan cahaya dengan cermin atau lensa. Berikut akan dibahas beberapa alat optik yang sering kamu temui dalam kehidupan sehari-hari.
Kamera
Kamera merupakan salah satu alat optik yang besar manfaatnya. Dengan adanya kamera kamu dapat mengabadikan kejadian-kejadian penting dan bersejarah. Pernahkah kamu menggunakan kamera? Kamera terdiri atas tiga bagian utama, yaitu lensa, diafragma, dan film. Cara kerja kamera adalah sebagai berikut. Benda yang akan diambil gambarnya diletakkan di depan kamera.
Cahaya yang berasal dari objek tersebut akan diterima oleh lensa cembung dan akan dibiaskan sehingga membentuk bayangan nyata di film. Kedudukan lensa terhadap film dapat diubah-ubah. Hal ini dimaksudkan agar bayangan yang terbentuk jatuh tepat di atas film. Pada film, terdapat zat kimia yang peka terhadap cahaya. Cahaya gelap dan cahaya terang masing-masing akan meninggalkan jejak yang berbeda pada kamera. Dari film, gambar tersebut dapat dicuci dan dicetak.
Jika diperhatikan, prinsip kerja antara kamera dan mata kita adalah sama. Mata kita menangkap bayangannya di retina yang akan diolah oleh otak melalui saraf, sedangkan pada kamera, bayangan yang ditangkap lensa dibentuk pada film.

Lup (Kaca Pembesar)
Lup adalah alat optik yang menggunakan lensa cembung untuk melihat benda-benda kecil. Lup biasa digunakan untuk melihat nama-nama jalan di peta yang tercetak sangat kecil, melihat gambar di perangko, dan melihat komponen-komponen jam tangan yang kecil.
Agar benda terlihat, maka benda diletakkan di antara titik pusat (O) dan titik fokus (F) sehingga terbentuk bayangan yang bersifat maya, tegak, dan diperbesar. Saat bayangan terbentuk di titik dekat mata, maka mata berakomodasi maksimum. Jika ingin mengamati benda dengan lup tanpa berakomodasi, maka benda diletakkan tepat di titik fokus lensa sehingga yang masuk ke mata berupa sinar sejajar. Ini dikatakan mengamati dengan mata tidak berakomodasi.
Mikroskop
Pernahkah kamu bertanya-tanya bagaimana caranya para ilmuwan mengamati jasad renik? Para peneliti biasanya menggunakan mikroskop untuk melihat-benda-benda kecil yang tidak dapat dilihat dengan mata telanjang. Mikroskop terdiri atas dua buah lensa cembung yang berfungsi untuk memperbesar bayangan benda. Lensa ini dinamakan lensa objektif dan lensa okuler. Lensa objektif adalah lensa yang diletakkan dekat dengan objek yang akan diamati, sedangkan lensa okuler adalah lensa yang diletakkan dekat mata. Jarak fokus lensa objektif lebih kecil dari jarak fokus lensa okuler (fob < fok).
Benda yang diamati diletakkan di depan lensa objektif di antara Fob dan 2Fob. Bayangan yang dibentuk oleh lensa objektif bersifat nyata, terbalik dan diperbesar. Bayangan yang dibentuk oleh lensa objektif akan menjadi benda bagi lensa okuler.
Bila diamati dengan mata berakomodasi, maka benda (bayangan dari lensa objektif) diletakkan di antara titik pusat lensa okuler (Ook) dan titik fokus okuler (Fok). Sedangkan jika diamati dengan mata tanpa berakomodasi, maka benda (bayangan dari lensa objektif) diletakkan di titik fokus lensa okuler (Fok).
Bayangan yang dibentuk oleh lensa okuler bersifat maya, tegak, dan diperbesar. Bayangan akhir yang dibentuk adalah maya, terbalik dan diperbesar. Bayangan ini dapat dilihat mata pengamat. Bayangan ini telah mengalami perbesaran beberapa kali lipat sehingga benda yang sangat kecil akan tampak besar.
Teleskop (Teropong)
Teropong merupakan alat optik yang digunakan sebagai alat untuk melihat benda yang letaknya jauh. Teropong dibedakan menjadi dua yaitu teropong bias (tersusun atas beberapa lensa) dan teropong pantul (tersusun atas beberapa cermin dan lensa). Teropong bias antara lain teropong bintang (astronomi), teropong bumi, dan teropong panggung (teropong Galileo).
Teropong bintang digunakan untuk mengamati benda-benda langit. Bagaimana cara kerja teropong bintang? Cara kerja teropong bintang mirip dengan cara kerja mikroskop. Teropong ini terdiri atas dua buah lensa cembung yaitu lensa objektif dan lensa okuler. Lensa objektif digunakan untuk menangkap cahaya dari benda-benda yang jauh. Karena jaraknya jauh, benda dapat dianggap diletakkan di luar 2F. Dengan demikian bayangan yang dibentuknya adalah nyata, terbalik, dan diperkecil. Bayangan dari lensa objektif ini menjadi benda bagi lensa okuler. Oleh lensa okuler, bayangan ini dibiaskan lagi sehingga membentuk bayangan yang maya, tegak, dan diperbesar dan dapat dilihat dengan mata. Dengan demikian benda-benda langit yang jaraknya jauh akan tampak dekat dan jelas jika dilihat menggunakan teropong bintang. Bayangan yang dihasilkan teropong bintang adalah terbalik.

Periskop
Apakah periskop itu? Periskop adalah alat optik yang digunakan pada kapal selam untuk melihat permukaan laut. Kapal selam perlu melihat keadaan permukaan laut sebelum kapal selam tersebut muncul mengapung di permukaan. Periskop terdiri atas dua buah lensa cembung dan dua buah prisma siku-siku sama kaki.


PENERAPAN MEDAN MAGNET DALAM KEHIDUPAN SEHARI-HARI

   Magnet dapat ditemukan dan digunakan dalam kehidupan sehari-hari antara lain :
1. Jarum kompas adalah dari magnet permanen.

2. Pintu kulkas memiliki magnet permanen agar selalu tertutup.

3. Kartu ATM dan kartu kredit memiliki jalur magnet yang berisi informasi.

4. TV dan monitor komputer menggunakan elektromagnetik untuk 
menghasilkan gambar.

5. Mikrofon dan speaker menggunakan kombinasi magnet permanen dan 
elektromagnetik.

6. Media rekaman magnetik: Tape VHS biasa mengandung golongan tape 
bermagnet. Informasi yang memproduksi video dan suara dikodekan pada 
lapisan bermagnet pada tape.

7. Kaset audio kompak mengandung magnet untuk menghasilkan audio.

8. Kartu kredit, kartu debit, dan kartu ATM: Semua kartu ini memiliki jalur 
bermagnet pada sisi-sisnya. Jalur ini mengandung informasi yang dibutuhkan 
untuk menghubungi institusi keuangan pribadi dan menghubungkan dengan 
rekening bank.

9. Loudspeaker dan mikrophon: Loudspeaker merupakan kombinasi magnet 
permanen dan elektromagnetik. Loudspeaker pada dasarnya perangkat yang 
mengkonversi energi listrik (sinyal) ke energi mekanik (suara). 
Elektromagnetik membawa sinyal, yang menghasilkan perubahan bidang 
megnet dan menarik bidang yang ada pada magnet permanen. Pergerakan 
penarikan dan penolakan menggerakkan kon, yang menghasilkan suara. 
Kebanyakan speaker tergantung kepada teknologi ini, tetapi ada juga yang 
menggunakan konsep yang berbeda. Mikrophon standar berbasis kepada 
konsep yang sama, tetapi menyongsang. Mikrophon memiliki kon atau selaput 
yang terlekat pada gelongan kabel. Gelung itu terletak dalam megnet 
berbentuk khusus. Bila suara mengegarkan selaput maka gelung itu turut 
bergetar dan menghasilkan voltage saat ia melalui medan magnet. Voltage 
dalam kabel ini adalah sinyal listrik yang mewakili suara asal.

10. Motor listrik dan generator: Motor listrik (seperti speaker) tergantung pada 
kombinasi eletromagnet dan magnet permanen, dan seperti speaker, 
mengganti energi listrik ke energi mekanis. Generator bertindak merubah 
energi mekanis ke energi listrik.

11. Transformer / trafo : Transformer merupakan perangkat yang 
mengkonversi energi listrik antara dua perangkat yang terpisah 
mengngunakan listrik melalui konektor magnet.